Jumat, 17 Februari 2012


Asal Usul Jam Kerja Sepanjang 8 Jam Sehari

Selama Revolusi Industri, banyak perusahaan berusaha untuk memaksimalkan produksi dari pabrik-pabrik mereka dengan menjaga agar pabrik-pabrik tersebut bekerja dengan jam sebanyak mungkin setiap harinya. Biasanya mereka akan menerapkan jam kerja dari matahari terbit sampai matahari terbenam. Upah yang diberikan juga sangat rendah, sehingga para pekerja sendiri sering mengajak anak-anak mereka untuk bekerja di pabrik-pabrik sebagai buruh dibanding menyekolahkan mereka. Dengan sedikit representasi, pendidikan, atau pilihan, pekerja pabrik juga cenderung untuk bekerja dalam kondisi kerja yang buruk. Jam kerja pada masa saat ini biasanya berlangsung antara 10-18 jam per hari, enam hari seminggu.

Tapi, ini semua mulai berubah pada abad ke-19. Orang yang pertama menyarankan jam kerja sepanjang 8 jam sehari adalah seorang berkebangsaan Inggris bernama Robert Owen, yang juga salah satu pendiri paham sosialisme. Owen merasa bahwa waktu dalam sehari seharusnya dibagi menjadi tiga, dimana para pekerja harus mendapatkan perbandingan waktu yang sama untuk diri mereka sendiri dan tidur istirahat seperti yang mereka lakukan untuk bekerja. Pada tahun 1817, ia mulai berkampanye dengan kalimat slogan, "Delapan jam kerja, delapan jam rekreasi, delapan jam istirahat." Sayangnya, hal ini tidak mendapat tanggapan serius selama beberapa waktu, sampai pada abad ke-19 dimana terjadi serangkaian demo para buruh yang berlalu dengan peningkatan kondisi kerja dan pengurangan jam kerja bagi pekerja pabrik. Sehingga akhirnya, ditetapkan bahwa wanita dan anak-anak diberi jam kerja selama 10 jam sehari.


Usulan jam kerja 8 jam sehari muncul sekali lagi di Inggris pada tahun 1884 yang dicetuskan oleh Tom Mann yang merupakan anggota dari Federasi Sosial Demokrat. Mann kemudian membentuk "Eight Hour League" yang salah satunya bertujuan agar jam kerja 8 jam sehari ditetapkan. Kemenangan terbesar mereka datang ketika mereka berhasil meyakinkan Trades Union Congress, yang mewakili mayoritas serikat buruh di Inggris untuk menetapkan jam kerja 8 jam sehari yang bahkan berlaku sampai hari ini.

Dorongan untuk memangkas jam kerja dimulai lebih awal lagi di Amerika Serikat, pada tahun 1791, dimana para pekerja di Philadelphia mendesak untuk diberlakukannya jam kerja 10 jam sehari termasuk di dalamnya 2 jam waktu untuk makan. Pada tahun 1830-an, dukungan untuk jam kerja 8 jam sehari dicetuskani diantara mayoritas rakyat kelas pekerja di Amerika Serikat, tapi masih gagal untuk menemukan dukungan di antara pemilik perusahaan.

Momentum kemudian didapatkan ketika beberapa "Eight Hour League" terbentuk di Amerika Serikat, seperti yang Mann dirikan di Inggris pada waktu yang sama. Pada tahun 1884, The Federation of Organized Trades and Labor Unions menyatakan bahwa tanggal 1 Mei 1886 akan menjadi hari pertama dimana jam kerja 8 jam sehari diwajibkan. Namun hal ini diabaikan oleh para pemilik perusahaan sehingga menyebabkan para buruh mogok kerja dan melakukan aksi protes. Sehingga ketika 1 Mei 1886 tiba, sekitar 350.000 pekerja mogok dari pekerjaan mereka memprotes untuk diberlakukannya jam kerja 8 jam sehari.

Pada tahun 1905 para pemilik industri akhirnya mulai menerapkan jam kerja 8 jam sehari atas inisiatif mereka sendiri. Salah satu perusahaan yang pertama menerapkan hal ini adalah Ford Motor Company, pada tahun 1914, tidak hanya itu mereka juga menggandakan gaji para pekerja mereka. Yang mengejutkan, hal ini malah mengakibatkan produktivitas Ford meningkat secara signifikan dan margin keuntungan Ford menjadi dua kali lipat dalam dua tahun setelah menerapkan perubahan ini. Hal ini kemudian mendorong perusahaan lain untuk mengambil langkah serupa.



Jumat, 03 Februari 2012

Mengapa harus kata "BURUH"


Assalammu'alaikum,

Beberapa hari yang lalu..
Banyak ungkapan pro dan kontra yang muncul ketika aksi para pekerja di daerah Bekasi yang berselisih faham dengan APINDO terkait UMK merebak ke permukaan, dan munculah aksi pemblokiran jalan...bahkan jalan tol.
Saya tidak ingin membahas masalah UMK atau demo yang terjadi, tetapi ungkapan "buruh" yang selalu dipakai oleh para komentator...

Sedikit saya sunting pengertian "buruh" dari wikipedia ;

Buruh atau Pekerja, atau Tenaga Kerja maupun Karyawan pada dasarnya adalah manusia yang menggunakan tenaga dan kemampuannya untuk mendapatkan balasan berupa pendapatan baik berupa uang maupun bentuk lainya kepada Pemberi Kerja atau Pengusaha atau majikan.
Pada dasarnya, buruh, Pekerja, Tenaga Kerja maupun karyawan adalah sama. namun dalam kultur Indonesia, "Buruh" berkonotasi sebagai pekerja rendahan, hina, kasaran dan sebagainya. sedangkan pekerja, Tenaga kerja dan Karyawan adalah sebutan untuk buruh yang lebih tinggi, dan diberikan cenderung kepada buruh yang tidak memakai otot tapi otak dalam melakukan kerja. akan tetapi pada intinya sebenarnya keempat kata ini sama mempunyai arti satu yaitu Pekerja. hal ini terutama merujuk pada Undang-undang Ketenagakerjaan, yang berlaku umum untuk seluruh pekerja maupun pengusaha di Indonesia.
Buruh dibagi atas 2 klasifikasi besar:
  • Buruh profesional - biasa disebut buruh kerah putih, menggunakan tenaga otak dalam bekerja
  • Buruh kasar - biasa disebut buruh kerah biru, menggunakan tenaga otot dalam bekerja


Mengapa ?

Harus kata buruh yang dipakai? mengapa bukan pekerja atau karyawan?
Apakah karena mereka melakukan demo ?
Apakah karena mereka berasal dari kalangan bawah (mungkin itu fikiran para komentator).
Yang pasti ...
alangkah indahnya jika semuanya bisa diselesaikan dengan damai...
dan tidak ada ungkapan yang mungkin menyakitkan perasaan hati manusia lain dibumi ini.
atau tindakan yang membuat orang lain merasa menderita..

#######################################################
Wassalammu'alaikum


Senin, 12 Desember 2011

Perjalanan Hidup...

Bogor, 12 Desember 2011 ; 18:59

Perjalanan hidup..ternyata bukanlah sesuatu yang sulit, tetapi juga bukan sesuatu yang mudah untuk dijalani. Banyak pilihan yang membuat kita bingung, meskipun sebenarnya selalu ada jawaban..tapi terkadang ego kita mengalahkan semua pilihan bijak yang ada.
Benar kata orang bijak bahwa kita tidak akan pernah ingat hal baik yang pernah kita lakukan, akan tetapi kita akan selalu ingat kesalahan yang pernah kita perbuat, meski dengan jutaan kali berbuat baik...noda itu tetap ada.
Kehidupan harus terus berjalan, dan kita tidak harus terbebani dengan kesalahan yang pernah ada...kita hanya perlu menjadikan kesalahan itu sebagai rambu, sebagai alarm agar kita tidak terjebak di kesalahan yang sama.

Didepanku ada jalan panjang yang harus aku lalui...
kembali..banyak pilihan yang ada, terkadang lelah menerpa..terkadang asa menghilang...terkadang bimbang hadir..tapi hidup harus terus berjalan.

Perjalanan hidup, akan menjadikan manusia menemukan dirinya sendiri...menemukan takdir dan pilihan hidupnya..

Semoga di akhir perjalananku, ada cahaya kasih...cahaya cinta yang bisa temani aku menjadi seutuhnya manusia yang ditakdirkan untuk selalu menjadi makhluk yang selalu bersyukur kepada Sang Maha Pencipta..


Bogor, 12 Des, 19:10

Senin, 23 Mei 2011

5 Dimensi Kualitas dalam industri Jasa


Ada Lima dimensi dalam menentukan Kualitas Jasa, yaitu :
1.      Reliability : Yaitu kemampuan untuk memberikan pelayanan yang sesuai dengan janji yang ditawarkan.
2.      Responsiveness : Respon atau kesigapan karyawan dalam membantu pelanggan dan memberikan pelayanan yang cepat dan tanggap, yang meliputi : kesigapan karyawan dalam melayani pelanggan, kecepatan karyawan dalam menangani transaksi, dan penanganan keluhan pelanggan.
3.      Assurance , meliputi kemampuan karyawan atas : pengetahuan terhadap produk secara tepat, kualitas keramahtamahan, perhatian dan kesopanan dalam memberi pelayanan, ketrampilan dalam memberikan informasi, kemampuan dalam memberikan keamanan didalam memanfaatkan jasa yang ditawarkan, dan kemampuan dalam menanamkan kepercayaan pelanggan terhadap perusahaan.
Dimensi kepastian atau jaminan ini merupakan gabungan dari dimensi :
a.      Kompetensi (competence), artinya ketrampilan dan pengetahuan yang dimiliki oleh para karyawan untuk melakukan pelayanan.
b.      Kesopanan (courtsy), yang meliuti keramahan, perhatian dan sikap karyawan.
c.      Kredibilitas (credibility), meliputi hal-hal yang berhubungan dengan kepercayaan kepada perusahaan seperti reputasi, prestasi dan sebagainya.
4.      Emphaty, yaitu perhatian secara individual yang diberikan perusahaan kepada pelanggan seperti kemudahan untuk menghubungi perusahaan, kemampuan karyawan untuk berkomunikasi dengan pelanggan, dan usaha perusahaan untuk memahami keinginan dan kebutuhan pelanggannya.
Dimensi Emphaty ini merupakan penggabunan dari dimensi :
a.      Akses (access), meliputi kemudahan untuk memanfaatkan jasa yang ditawarkan perusahaan.
b.      Komunikasi (communication), yang merupakan kemampuan melakukan komunikasi untuk menyampaikan informasi kepada pelanggan atau memperoleh masukan ari pelanggan.
c.      Pemahaman pada pelanggan (understanding the customer), meliputi usaha perusahaan untuk mengetahui dan memahami kebutuhan dan keinginan pelanggan.
5.      Tangibles, meliputi penampilan fasilitas fisik seperti gedung dan ruangan front office, tersedianya tempat parkir, kebersihan, kerapihan dan kenyamanan ruangan, kelengkapan peralatan komunikasi dan penampilan karyawan.

Kamis, 04 November 2010

Top 10 Improvement Tools Named After Lean Sensei




By Jon Miller | Post Date: July 9, 2007 5:41 PM | Comments: 11

1. Ohno Circle
Taiichi Ohno was the Toyota executive largely responsible for structuring and implementing the system known today as the Toyota Production System over four decades after World War II. Ohno was known for drawing a chalk circle around managers and making them stand in the circle until they had seen and documented all of the problems in a particular area.
ohno%20circle.PNG
Today the "stand in a circle" exercise is a great way to train one's eyes to see waste and to provide structure for the team leader to do daily improvement or for the busy executive with limited time to go to gemba.
When you spend time on the gemba standing in the Ohno Circle, you will see the gap between the target condition and the actual condition. It's time to decide where to start first in closing this gap, using the Pareto principle.
2. Pareto Chart
In 1906 Italian economist Vilfredo Pareto simplified the world for us with his 80/20 rule, or what is known as the Pareto principle. This is most often expressed in a Pareto chart.
Pareto.png
Identify the vital few that will give you the biggest impact towards closing the gap between current condition and target condition, and when that's done, move onto the next tallest bar in the Pareto.
To focus on addressing the root causes of the top 20% factors that are keeping your from hitting the target, the next step is to dig deeper into the root causes using the Ishikawa Diagram.
3. Ishikawa Diagram
The Ishikawa Diagram (also called the fishbone diagram or cause and effect diagram) was introduced in the 1960s by Kaoru Ishikawa. Ishikawa pioneered quality management processes at the Kawasaki shipyards, and in became one of the founding fathers of modern management. The diagram shows the causes of a certain event or condition. The Ishikawa Diagrma is one of the seven QC tools including the histogram, Pareto chart, check sheet, control chart, flowchart, and scatter diagram.
Ishikawa.png
It is quite a flexible tool. Root cause analysis can be conducted for manufacturing or production-type processes using the 4M (man, material, machine, methods) or sometimes up to 6M (add mother nature, measurement) as well as 4P (price, promotion, place, product) for a marketing and sales kaizen.
Now that you have identified the root causes of your problem, you are ready to implement countermeasures. For that, you'll need an action plan.
4. Gantt Chart
Henry Gantt was a management consultant who popularized the project management tool known as the Gantt Chart some time around 1910.
Gantt%20Chart.png
Anyone who has used Microsoft Project or who has used this classic project management tool has Mr. Gantt to thank. He revolutionized the managing of large, complex projects such as construction, worldwide when he introduced his Gantt Chart.
Gantt was a very early Lean sensei in that he set the foundation for later developments such as standard work combination sheet, scheduling a day's work and work balancing. The action plan must not be limited to "plan and do" but also "check and act / adjust" according to the PDCA Cycle, also known as the Deming Wheel.
5. Deming Wheel
The Deming Wheel is also known as the PDCA Wheel. Edwards Deming is credited with teaching PDCA to the Japanese, but proper credit should be given to Walter Shewhart, the pionnering statistician and teacher of Deming, who originated the PDCA notion.
PDCA.png
A more full explanation of the Plan, Do, Check and Act steps can be found on the Gemba Research website. One of the more powerful ways to test out your ideas through experiments is the Taguchi Method.
6. Taguchi Method
Genichi Taguchi took the notion of R.A. Fisher's Design of Experiments and sought to understand the influence of parameters on variation, not only on the mean. In conventional DOE, variation between experimental replications is considered a nuisance that experimenters would rather eliminate, whereas in Taguchi's mind, variation is a central point of investigation.
The diagram below shows the Taguchi Loss Function, which Ron Pereira at the Lean Six Sigma Academy explains the workings of Taguchi Method in a series of informative articles.
Taguchi%20Loss%20Function.PNG
Using these tools, you will have the data to prove that your experiment is a success! But how do you motivate people to come around to your way of thinking and adopt a new way? It might be helpful to know something about human motivation and Maslow's Hierarchy of Needs.
7. Maslow's Hierarchy of Needs
Abraham Maslow was an American psychologist who is most famous for the hierarchy of human needs. Maslow's model gives us the foundation for understanding how to motivate people to change, which is a topic of great interest to us, addressed in part 1part 2 and part 3 of a series of previous posts.
Maslow.png
Improvements made, you now need a way to check and audit the process regularly so that the process does not revert to the old way, and that new problems are discovered quickly. The Oba Gage is a useful means to enable a visual workplace for abnormality management.
8. Oba Gauge
A 4 foot tall Japanese Lean sensei named Mr. Oba was notorious for insisting that nothing in the factory be taller than his eye-level This resulted in the "Oba Gage" for a visual workplace. The idea is to avoid creating view-blockers in your workplace whenever possible. It is also called the "4-foot rule" or "1.3 meter rule".
oba%20gage.PNG
The workplace is more visual, many large problems have been solved and the process is stable. But how can we avoid complacency and keep continuous improvement going?
9. Heinrich Principle
H.W. Heinrich taught us through his Heinrich Principle that we must pay attention to even the smallest of safety incidents or so-called "near misses" if we want to find the root causes of what could become larger safety accidents. The same principle applies to 5S, the elimination of waste, and awareness of quality problems. Lean management means everyone is vigilant about even the smallest problems. This requires constant education and attention to maintain a heightened sensitivity and avoid habituation to the warusa kagen (condition of badness).
Heinrich%20principle.png
The first nine tools used properly will result in improved safety, quality, cost and delivery. This will also open up capacity in your company to develop and deliver new products and services. But which products and services will give you a market advantage? The Kano Model helps you answer this question.
10. Kano Model
When we go back to the beginning in the cycle of continuous improvement, we have to ask again "What does the customer want?" Professor Noriaki Kano gave us a model to answer this question more effectively. The chart below illustrates how there is the Voice of the Customer (spoken needs) as well as what is sometimes called Mind of the Customer (latent or unspoken needs).
Kano%20Model.png
Quality Function Deployment (QFD) makes effective use of the Kano Model, as does fact-based Hoshin Kanri (policy management or Lean strategic planning). C2C Solutions offers a Flash tutorial of the Kano Model, about 8 minutes long.
Kano%20Model%202.png
You might ask why to include a Professor who developed a model largely used for product development and strategic planning on this list of improvement tools named after Lean sensei. If we follow Pareto's Law, 80% of the waste in a product is in the design phase and likewise 80% of the waste in management effort is probably in misdirected or unaligned strategy. So although the Kano Model ranked at #10 on the list because it is far less practical and hands-on useful on a daily basis than the other nine, one could say that it has the biggest potential impact on the overall system.
There are many tools in the world. Knowing how to use them is important, but even more important is knowing how to put them to use as an overall system in such a way that helps people see things in a new way, to change how they think and work.


Source :
http://www.gembapantarei.com/2007/07/top_10_improvement_tools_named_after_lean_sensei.html
November 4th, 4:57PM

Rabu, 13 Oktober 2010

Kla Project - Menjemput Impian

Sabtu, 09 Oktober 2010

TAGUCHI METHODS

There has been a great deal of controversy about Genichi Taguchi's methodology since it was first introduced in the United States. This controversy has lessened considerably in recent years due to modifications and extensions of his methodology. The main controversy, however, is still about Taguchi's statistical methods, not about his philosophical concepts concerning quality or robust design. Furthermore, it is generally accepted that Taguchi's philosophy has promoted, on a worldwide scale, the design of experiments for quality improvement upstream, or at the product and process design stage.
Taguchi's philosophy and methods support, and are consistent with, the Japanese quality control approach that asserts that higher quality generally results in lower cost. This is in contrast to the widely prevailing view in the United States that asserts that quality improvement is associated with higher cost. Furthermore, Taguchi's philosophy and methods support the Japanese approach to move quality improvement upstream. Taguchi's methods help design engineers build quality into products and processes. As George Box, Soren Bisgaard, and Conrad Fung observed: "Today the ultimate goal of quality improvement is to design quality into every product and process and to follow up at every stage from design to final manufacture and sale. An important element is the extensive and innovative use of statistically designed experiments."

TAGUCHI'S DEFINITION OF QUALITY

The old traditional definition of quality states quality is conformance to specifications. This definition was expanded by Joseph M. Juran (1904-) in 1974 and then by the American Society for Quality Control (ASQC) in 1983. Juran observed that "quality is fitness for use." The ASQC defined quality as" the totality of features and characteristics of a product or service that bear on its ability to satisfy given needs."
Taguchi presented another definition of quality. His definition stressed the losses associated with a product. Taguchi stated that "quality is the loss a product causes to society after being shipped, other than losses caused by its intrinsic functions." Taguchi asserted that losses in his definition "should be restricted to two categories: (1) loss caused by variability of function, and (2) loss caused by harmful side effects." Taguchi is saying that a product or service has good quality if it "performs its intended functions without variability, and causes little loss through harmful side effects, including the cost of using it."
It must be kept in mind here that "society" includes both the manufacturer and the customer. Loss associated with function variability includes, for example, energy and time (problem fixing), and money (replacement cost of parts). Losses associated with harmful side effects could be market shares for the manufacturer and/or the physical effects, such as of the drug thalidomide, for the consumer.
Consequently, a company should provide products and services such that possible losses to society are minimized, or, "the purpose of quality improvement … is to discover innovative ways of designing products and processes that will save society more than they cost in the long run." The concept of reliability is appropriate here. The next section will clearly show that Taguchi's loss function yields an operational definition of the term "loss to society" in his definition of quality.

TAGUCHI'S LOSS FUNCTION

We have seen that Taguchi's quality philosophy strongly emphasizes losses or costs. W. H. Moore asserted that this is an "enlightened approach" that embodies "three important premises: for every product quality characteristic there is a target value which results in the smallest loss; deviations from target value always results in increased loss to society; [and] loss should be measured in monetary units (dollars, pesos, francs, etc.)."
Figure I depicts Taguchi's typically loss function. The figure also contrasts Taguchi's function with the traditional view that states there are no losses if specifications are met.

Figure 1 Taguchi
Figure 1
Taguchi's Loss Function

It can be seen that small deviations from the target value result in small losses. These losses, however, increase in a nonlinear fashion as deviations from the target value increase. The function shown above is a simple quadratic equation that compares the measured value of a unit of output to the target T.: 

where L(Y) is the expected loss associated with the specific value of Y.
Essentially, this equation states that the loss is proportional to the square of the deviation of the measured value, Y, from the target value, T. This implies that any deviation from the target (based on customers' desires and needs) will diminish customer satisfaction. This is in contrast to the traditional definition of quality that states that quality is conformance to specifications. It should be recognized that the constant can be determined if the value of L(Y) associated with some value are both known. Of course, under many circumstances a quadratic function is only an approximation.
Since Taguchi's loss function is presented in monetary terms, it provides a common language for all the departments or components within a company. Finally, the loss function can be used to define performance measures of a quality characteristic of a product or service. This property of Taguchi's loss function will be taken up in the next section. But to anticipate the discussion of this property, Taguchi's quadratic function can be converted to:
This can be accomplished by assuming has some probability distribution with mean, a and variance o.2 This second mathematical expression states that average or expected loss is due either to process variation or to being off target (called "bias"), or both.

TAGUCHI, ROBUST DESIGN, AND THE
DESIGN OF EXPERIMENTS

Taguchi asserted that the development of his methods of experimental design started in Japan about 1948. These methods were then refined over the next several decades. They were introduced in the United States around 1980. Although, Taguchi's approach was built on traditional concepts of design of experiments (DOE), such as factorial and fractional factorial designs and orthogonal arrays, he created and promoted some new DOE techniques such as signal-to-noise ratios, robust designs, and parameter and tolerance designs. Some experts in the field have shown that some of these techniques, especially signal-to-noise ratios, are not optimal under certain conditions. Nonetheless, Taguchi's ideas concerning robust design and the design of experiments will now be discussed.
DOE is a body of statistical techniques for the effective and efficient collection of data for a number of purposes. Two significant ones are the investigation of research hypotheses and the accurate determination of the relative effects of the many different factors that influence the quality of a product or process. DOE can be employed in both the product design phase and production phase.
A crucial component of quality is a product's ability to perform its tasks under a variety of conditions. Furthermore, the operating environmental conditions are usually beyond the control of the product designers, and, therefore robust designs are essential. Robust designs are based on the use of DOE techniques for finding product parameter settings (e.g., temperature settings or drill speeds), which enable products to be resilient to changes and variations in working environments.
It is generally recognized that Taguchi deserves much of the credit for introducing the statistical study of robust design. We have seen how Taguchi's loss function sets variation reduction as a primary goal for quality improvement. Taguchi's DOE techniques employ the loss function concept to investigate both product parameters and key environmental factors. His DOE techniques are part of his philosophy of achieving economical quality design.
To achieve economical product quality design, Taguchi proposed three phases: system design, parameter design, and tolerance design. In the first phase, system design, design engineers use their practical experience, along with scientific and engineering principles, to create a viably functional design. To elaborate, system design uses current technology, processes, materials, and engineering methods to define and construct a new "system." The system can be a new product or process, or an improved modification of an existing product or process.
The parameter design phase determines the optimal settings for the product or process parameters. These parameters have been identified during the system design phase. DOE methods are applied here to determine the optimal parameter settings. Taguchi constructed a limited number of experimental designs, from which U.S. engineers have found it easy to select and apply in their manufacturing environments.
The goal of the parameter design is to design a robust product or process, which, as a result of minimizing performance variation, minimizes manufacturing and product lifetime costs. Robust design means that the performance of the product or process is insensitive to noise factors such as variation in environmental conditions, machine wear, or product to-product variation due to raw material differences. Taguchi's DOE parameter design techniques are used to determine which controllable factors and which noise factors are the significant variables. The aim is to set the controllable factors at those levels that will result in a product or process being robust with respect to the noise factors.
In our previous discussion of Taguchi's loss function, two equations were discussed. It was observed that the second equation could be used to establish quality performance measures that permit the optimization of a given product's quality characteristic. In improving quality, both the average response of a quality and its variation are important. The second equation suggests that it may be advantageous to combine both the average response and variation into a single measure. And Taguchi did this with his signal-to-noise ratios (S/N). Consequently, Taguchi's approach is to select design parameter levels that will maximize the appropriate S/N ratio.
These S/N ratios can be used to get closer to a given target value (such as tensile strength or baked tile dimensions), or to reduce variation in the product's quality characteristic(s). For example, one S/N ratio corresponds to what Taguchi called "nominal is best." Such a ratio is selected when a specific target value, such as tensile strength, is the design goal.
For the "nominal is best" case, Taguchi recommended finding an adjustment factor (some parameter setting) that will eliminate the bias discussed in the second equation. Sometimes a factor can be found that will control the average response without affecting the variance. If this is the case, our second equation tells us that the expected loss becomes:
Consequently, the aim now is to reduce the variation. Therefore, Taguchi's S/N ratio is:

where is the sample's standard deviation.
In this formula, by minimizing , − 10 log 10 , is maximized. Recall that all of Taguchi's S/N ratios are to be maximized.
Finally, a few brief comments concerning the tolerance design phase. This phase establishes tolerances, or specification limits, for either the product or process parameters that have been identified as critical during the second phase, the parameter design phase. The goal here is to establish tolerances wide enough to reduce manufacturing costs, while at the same time assuring that the product or process characteristics are within certain bounds.

EXAMPLES AND CONCLUSIONS

As Thomas P. Ryan has stated, Taguchi at the very least, has focused "our attention on new objectives in achieving quality improvement. The statistical tools for accomplishing these objectives will likely continue to be developed." Quality management "gurus," such as W. Edwards Deming (1900-1993) and Kaoru Ishikawa (1915-), have stressed the importance of continuous quality improvement by concentrating on processes upstream. This is a fundamental break with the traditional practice of relying on inspection downstream. Taguchi emphasized the importance of DOE in improving the quality of the engineering design of products and processes. As previously mentioned, however," his methods are frequently statistically inefficient and cumbersome." Nonetheless, Taguchi's design of experiments have been widely applied and theoretically refined and extended. Two application cases and one refinement example will now be discussed.
K. N. Anand, in an article in Quality Engineering, discussed a welding problem. Welding was performed to repair cracks and blown holes on the cast-iron housing of an assembled electrical machine. Customers wanted a defect-free quality weld, however the welding process had resulted in a fairly high percentage of welding defects. Management and welders identified five variables and two interactions that were considered the key factors in improving quality. A Taguchi orthogonal design was performed resulting in the identification of two highly significant interactions and a defect-free welding process.
The second application, presented by M. W. Sonius and B. W. Tew in a Quality Engineering article, involved reducing stress components in the connection between a composite component and a metallic end fitting for a composite structure. Bonding, pinning, or riveting the fitting in place traditionally made the connections. Nine significant variables that could affect the performance of the entrapped fiber connections were identified and a Taguchi experimental design was performed. The experiment identified two of the nine factors and their respective optimal settings. Therefore, stress levels were significantly reduced.
The theoretical refinement example involves Taguchi robust designs. We have seen where such a design can result in products and processes that are insensitive to noise factors. Using Taguchi's quadratic loss function, however, may provide a poor approximation of true loss and suboptimal product or process quality. John F. Kros and Christina M. Mastrangelo established relationships between nonquadratic loss functions and Taguchi's signal-to-noise ratios. Applying these relationships in an experimental design can change the recommended selection of the respective settings of the key parameters and result in smaller losses.
Peter B. Webb Ph.D. ]

FURTHER READING:

American Society for Quality Control. Statistics Division. Glossary and Tables. for Statistical Quality Control. Milwaukee, WI: American Society for Quality Control, 1983.
Anand, K. N. "Development of Process Specification for Radiographic Quality Welding." Quality Engineering, June 1997, 597-601.
Barker, T. B. "Quality Engineering by Design: Taguchi's Philosophy." Quality Progress 19, no. 12 (1986), 32-42.
Box, G. E P., and others. "Quality Practices in Japan." Quality Progress, March 1988, 37-41.
Byrne, Diane M., and Shin Taguchi. "The Taguchi Approach to Parameter Design." ASQC Quality Congress Transaction, 1986, 168-77.
Daniel, Cuthburt. Applications of Statistics to Industrial Experimentation. New York: Wiley, 1976.
Farnum, Nicholas R. Modern Statistical Quality Control and Improvement. New York: Duxbury Press, 1994.
Kackar, R. N. "Off-Line Quality Control, Parameter Design, and the Taguchi Method." Journal of Quality Technology 17, no. 4 (1985): 176-88.
Kros, John F., and Christina M. Mastrangelo. "Impact of Nonquadratic Loss in the Taguchi Design Methodology." Quality Engineering 10, no. 3 (1998): 509-19.
Lochner, Robert H., and Joseph E. Matar. Designing for Quality: An Introduction to the Best of Taguchi and Western Methods of Statistical Experimental Design. Milwaukee, WI: ASQC Quality Press, 1990.
Phadke, M. S. Quality Engineering Using Robust Design. New York: Prentice Hall, 1989.
Quinlan, J. "Product Improvement by Application of Taguchi Method." In Third Supplier Symposium on Taguchi Methods. Dearborn, Ml: American Supplier Institute, 1985.
Ross, P. J. Taguchi Techniques for Quality Engineering. New York: McGraw-Hill, 1988.
Ryan, T. P. "Taguchi's Approach to Experimental Design: Some Concerns." Quality Progress, May 1988, 34-36.
Sonius, M. W., and B. W. Tew. "Design Optimization of Metal to Composite Connections Using Orthogonal Arrays." Quality Engineering 9, no. 3 (1997): 479-87.
Taguchi, Genichi. Introduction to Quality Engineering. White Plains, NY: Asian Productivity Organization, UNIPUB, 1986.
——. "The Development of Quality Engineering." ASI Journal 1, no. 1 (1988): 1-4.